Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Simon J. Coles, ${ }^{\text {a }}{ }^{*}$ David E. Hibbs, ${ }^{\text {b }}$ Michael B. Hursthouse, ${ }^{\text {a }}$ Michael A. Beckett, ${ }^{\text {c }}$ Paul Owen ${ }^{\text {c }}$ and K. Sukumar Varma ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Chemistry, University of Southampton, Southampton SO17 1BJ, England, ${ }^{\mathbf{b}}$ School of Chemistry, University of Sydney, NSW 2006, Australia, and ${ }^{\text {c }}$ Department of Chemistry, University of Wales, Bangor, Gwynedd LL57 2UW, Wales

Correspondence e-mail: s.j.coles@soton.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
H -atom completeness 80%
Disorder in solvent or counterion
R factor $=0.033$
$w R$ factor $=0.078$
Data-to-parameter ratio $=11.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(triphenylstannyl)borate toluene solvate

The title compound, $\left[\mathrm{Sn}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{6}\left(\mathrm{BHO}_{3}\right)\right] \cdot \mathrm{C}_{7} \mathrm{H}_{8}$ or $\left(\mathrm{Ph}_{3} \mathrm{SnO}\right)_{2}$ $\mathrm{B}(\mathrm{OH}) \cdot \mathrm{C}_{7} \mathrm{H}_{8}$, is an unexpected diester produced during an attempted recrystallization of $\left(\mathrm{Ph}_{3} \mathrm{Sn}\right)_{3} \mathrm{~B}_{3} \mathrm{O}_{3}$. A planar central B atom is coordinated to two $\mathrm{Ph}_{3} \mathrm{Sn}$ groups through ester linkages, and to a hydroxide group.

Comment

The molecular structure obtained in this study (Fig. 1) is that of the toluene solvate of the bis(triphenylstannyl) ester of boric acid, $\left(\mathrm{Ph}_{3} \mathrm{SnO}\right)_{2} \mathrm{~B}(\mathrm{OH}) \cdot \mathrm{C}_{7} \mathrm{H}_{8}$, (I), as opposed to the expected product, $\left(\mathrm{Ph}_{3} \mathrm{Sn}\right)_{3} \mathrm{~B}_{3} \mathrm{O}_{3}$. Presumably it was formed as a hydrolysis product over the crystallization time period as a result of adventitious water in the (supposedly dried) solvents. Selected bond lengths and angles are given in Table 1. Few compounds containing the $\mathrm{Sn}-\mathrm{O}-\mathrm{B}$ link have been structurally characterized; these include $\left(\mathrm{Ph}_{3} \mathrm{SnO}\right)_{3} \mathrm{~B}$ (Ferguson et al., 1995) ${ }^{t} \mathrm{Bu}_{2} \mathrm{Sn}\{\mathrm{OB}(\mathrm{OH}) \mathrm{Ph}\}_{2}$ and ${ }^{t} \mathrm{Bu}_{2} \mathrm{Sn}(\mathrm{OH})_{2}\left\{\left({ }^{t} \mathrm{Bu}_{2}-\right.\right.$ $\left.\mathrm{SnO})_{2} \mathrm{OB}\left(2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)\right\}_{2} \cdot 2 \mathrm{MeCN}$ (Brown et al., 1992).

.PhMe
(I)

The core structure of (I) can be described as a planar threecoordinate $s p^{2}$-hybridized B atom bound to three O atoms with $\mathrm{O}-\mathrm{B}-\mathrm{O}$ angles of 118.3 (4)-121.7 (5) ${ }^{\circ}$ (sum $=359.9^{\circ}$) and $\mathrm{B}-\mathrm{O}$ distances of $1.353(6)-1.392(6) \AA$ (average $1.369 \AA$). Of the three O atoms, O 1 and O2 are two-coordinate and are respectively bound to Sn 1 and Sn 2 , while O 3 is presumably also two-coordinate and bound to an H atom. The $\mathrm{B} 1-\mathrm{O} 3$ bond distance $[1.361(6) \AA$] is not significantly different from the other two, and is close to their average $(1.376 \AA)$. The $\mathrm{B}-\mathrm{O}$ distances and $\mathrm{O}-\mathrm{B}-\mathrm{O}$ angles are not significantly different from those reported for the tris(triphenylstannyl)borate ester (Ferguson et al., 1995). The B-$\mathrm{O}-\mathrm{Sn}$ angles, at 116.2 and 122.0°, indicate that the O atoms are $s p^{2}$-hybridized, but there has been considerable discussion over the remarkable flexibility of $\mathrm{B}-\mathrm{O}-M(M=\mathrm{Sn}, \mathrm{Ge}, \mathrm{Si})$ bond angles in related compounds; these range from 112 to 140° (for Sn) (Ferguson et al., 1995; Brown et al., 1992), from 129 to 161° (for Si), and from 130 to 149° (for Ge) (Murphy et al., 1993). The Sn atoms are each further bound to three phenyl groups with $\mathrm{Sn}-\mathrm{C}$ distances of 2.119 (5)-2.139 (5) Å,

Received 18 January 2002 Accepted 25 January 2002 Online 31 January 2002

Figure 1
View of (I) (50% probability displacement ellipsoids).
(average $2.129 \AA$). The Sn atoms are not coplanar with the BO_{3} moiety and the average $\mathrm{Sn}-\mathrm{O}$ distance is $2.013 \AA$. The Sn atoms are four-coordinate and approximately tetrahedral, with $\mathrm{O}-\mathrm{Sn}-\mathrm{C}$ angles averaging 105.1° for Sn 1 and 106.2° for Sn 2 , with $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ angles of 110.2 (2)-114.4 (2) ${ }^{\circ}$; the $\mathrm{O} 1-$ $\mathrm{Sn} 1-\mathrm{C} 13$ and $\mathrm{O} 2-\mathrm{Sn} 2-\mathrm{C} 31$ angles, at 97.6 (2) and 99.3 (2) ${ }^{\circ}$, respectively, are considerably smaller than expected.

The crystal structure is composed of head-to-tail dimers, formed by interaction of a hydroxide with an ester oxygen $\left[\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 2^{\mathrm{i}}: \mathrm{O} 3 \cdots \mathrm{O} 2^{\mathrm{i}}=2.719\right.$ (4) \AA; symmetry code: (i) $1-x, y, 1 / 2-z]$.

Experimental

An attempted recrystallization of $\left(\mathrm{Ph}_{3} \mathrm{Sn}_{3}\right)_{3} \mathrm{~B}_{3} \mathrm{O}_{3}$ (Beckett et al., 1999) from a solution of $\mathrm{C}_{7} \mathrm{H}_{8}$ layered with petroleum ether (313-333 K) yielded, after several weeks, crystalline material from which a few single crystals (m.p. 380-383 K) suitable for an X-ray structure determination were obtained.

Crystal data

$\left[\mathrm{Sn}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{6}\left(\mathrm{BHO}_{3}\right)\right] \cdot \mathrm{C}_{7} \mathrm{H}_{8}$
$M_{r}=851.93$
Monoclinic, C2/c
$a=18.344$ (3) A
$b=19.129$ (6) \AA
$c=22.252$ (5) \AA
$\beta=100.50(3)^{\circ}$
$V=7678$ (3) \AA^{3}
$Z=8$

Data collection

Nonius FAST TV area-detector	5411 independent reflections
\quad diffractometer	3152 reflections with $I>2 \sigma(I)$
φ and ω scans (Darr et al., 1993)	$R_{\text {int }}=0.061$
Absorption correction: refined from	$\theta_{\max }=24.8^{\circ}$
$\Delta F(D I F A B S$; Walker \& Stuart,	$h=-20 \rightarrow 21$
$1983)$	$k=-20 \rightarrow 22$
$T_{\min }=0.795, T_{\max }=0.900$	$l=-16 \rightarrow 26$

$$
\begin{aligned}
& D_{x}=1.474 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }
\end{aligned}
$$

Cell parameters from 250 reflections
$\theta=1.9-24.8^{\circ}$
$\mu=1.34 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Parallelepiped, colourless
$0.22 \times 0.20 \times 0.08 \mathrm{~mm}$

$$
\begin{aligned}
& 5411 \text { independent reflections } \\
& 3152 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.061 \\
& \theta_{\max }=24.8^{\circ} \\
& h=-20 \rightarrow 21 \\
& k=-20 \rightarrow 22 \\
& l=-16 \rightarrow 26
\end{aligned}
$$

Refinement

$\begin{array}{ll}\text { Refinement on } F^{2} & \text { H-atom parameters constrained } \\ \left.R\left[F^{2}>F^{2}\right)\right]=0.033 & w=1 /\left[\sigma^{2}\left(F^{2}\right)+(0.029 P)^{2}\right]\end{array}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.029 P)^{2}\right]$
$w R\left(F^{2}\right)=0.078$
$S=0.88$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
5411 reflections
481 parameters
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.87 \mathrm{e}_{\mathrm{m}} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.50 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Sn1-O1	$1.999(3)$	Sn2-C31	$2.136(4)$
Sn1-C1	$2.122(5)$	$\mathrm{Sn} 2-\mathrm{C} 25$	$2.139(5)$
$\mathrm{Sn} 1-\mathrm{C} 7$	$2.123(5)$	$\mathrm{O} 1-\mathrm{B} 1$	$1.353(6)$
$\mathrm{Sn} 1-\mathrm{C} 13$	$2.137(5)$	$\mathrm{O} 2-\mathrm{B} 1$	$1.392(6)$
$\mathrm{Sn} 2-\mathrm{O} 2$	$2.027(3)$	$\mathrm{O} 3-\mathrm{B} 1$	$1.361(6)$
$\mathrm{Sn} 2-\mathrm{C} 19$	$2.119(5)$		
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{C} 1$	$107.75(17)$	$\mathrm{O} 2-\mathrm{Sn} 2-\mathrm{C} 25$	$110.86(18)$
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{C} 7$	$109.91(18)$	$\mathrm{C} 19-\mathrm{Sn} 2-\mathrm{C} 25$	$113.1(2)$
$\mathrm{C} 1-\mathrm{Sn} 1-\mathrm{C} 7$	$114.4(2)$	$\mathrm{C} 31-\mathrm{Sn} 2-\mathrm{C} 25$	$110.2(2)$
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{C} 13$	$97.64(15)$	$\mathrm{B} 1-\mathrm{O} 1-\mathrm{Sn} 1$	$122.0(3)$
$\mathrm{C} 1-\mathrm{Sn} 1-\mathrm{C} 13$	$112.1(2)$	$\mathrm{B} 1-\mathrm{O} 2-\mathrm{Sn} 2$	$116.2(3)$
$\mathrm{C} 7-\mathrm{Sn} 1-\mathrm{C} 13$	$113.6(2)$	$\mathrm{O} 1-\mathrm{B} 1-\mathrm{O} 3$	$120.0(4)$
$\mathrm{O} 2-\mathrm{Sn} 2-\mathrm{C} 19$	$108.36(19)$	$\mathrm{O} 1-\mathrm{B} 1-\mathrm{O} 2$	$118.3(4)$
$\mathrm{O} 2-\mathrm{Sn} 2-\mathrm{C} 31$	$99.33(15)$	$\mathrm{O} 3-\mathrm{B} 1-\mathrm{O} 2$	$121.7(5)$
$\mathrm{C} 19-\mathrm{Sn} 2-\mathrm{C} 31$	$114.2(2)$		

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O}^{\text {i }}$	0.82	1.91	$2.719(4)$	172

Symmetry code: (i) $1-x, y, \frac{1}{2}-z$.

The structure was found to contain partially occupied and disordered solvent which was modelled as toluene molecules to give best refinement results. The H atoms of the solvent were omitted, but those of the molecule of (I) were included in calculated positions using a riding model. All non- H atoms were refined anisotropically but it was necessary to restrain the C atoms of the toluene to approximate isotropic behaviour.

Data collection: MADNES (Pflugrath \& Messerschmidt, 1989); cell refinement: REFINE in MADNES; data reduction: MADNES; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1990); software used to prepare material for publication: SHELXL97.

The authors would like to thank the EPSRC for funding the crystallographic facilities.

References

Beckett, M. A., Owen, P. \& Varma, K. S. (1999). J. Organomet. Chem. 588, 107-112.
Brown, P., Mahon, M. F. \& Molloy, K. C. (1992). J. Chem. Soc. Dalton Trans. pp. 3503-3509.
Darr, J. A., Drake, S. R., Hursthouse, M. B. \& Malik, K. M. A. (1993). Inorg. Chem. 32, 5704-5708.
Ferguson, G., Spalding, T. R. \& O’Dowd, A. T. (1995). Acta Cryst. C51, 67-70.

metal-organic papers

Murphy, D., Sheehan, J. P., Spalding, T. R., Ferguson, G., Lough, A. J. \& Gallagher, J. F. (1993). J. Mater. Chem. 3, 1275-1283.
Pflugrath, J. W. \& Messerschmidt, A. (1989). MADNES. Version of 11th September. Delft Instruments, Delft, The Netherlands.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

